A Study of Semi-supervised Generative Ensembles

نویسندگان

  • Manuela Zanda
  • Gavin Brown
چکیده

Machine Learning can be divided into two schools of thought: generative model learning and discriminative model learning. While the MCS community has been focused mainly on the latter, our paper is concerned with questions that arise from ensembles of generative models. Generative models provide us with neat ways of thinking about two interesting learning issues: model selection and semi-supervised learning. Preliminary results show that for semi-supervised low-variance generative models, traditional MCS techniques like Bagging and Random Subspace Method (RSM) do not outperform the single classifier approach. However, RSM introduces diversity between base classifiers. This starting point suggests that diversity between base components has to lie within the structure of the base classifier, and not in the dataset, and it highlights the need for novel generative ensemble learning techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian GAN

Generative adversarial networks (GANs) can implicitly learn rich distributions over images, audio, and data which are hard to model with an explicit likelihood. We present a practical Bayesian formulation for unsupervised and semi-supervised learning with GANs. Within this framework, we use stochastic gradient Hamiltonian Monte Carlo to marginalize the weights of the generator and discriminator...

متن کامل

Semi-supervised Learning with Deep Generative Models

The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and develop new models that allow for effective generalisation from small labelled data sets to large ...

متن کامل

Pattern classification and clustering: A review of partially supervised learning approaches

The paper categorizes and reviews the state-of-the-art approaches to the partially supervised learning (PSL) task. Special emphasis is put on the fields of pattern recognition and clustering involving partially (or, weakly) labeled data sets. The major instances of PSL techniques are categorized into the following taxonomy: (i) active learning for training set design, where the learning algorit...

متن کامل

Semi-Supervised QA with Generative Domain-Adaptive Nets

We study the problem of semi-supervised question answering—-utilizing unlabeled text to boost the performance of question answering models. We propose a novel training framework, the Generative Domain-Adaptive Nets. In this framework, we train a generative model to generate questions based on the unlabeled text, and combine model-generated questions with human-generated questions for training q...

متن کامل

Elements of Generative Manifold Learning for semi-supervised tasks

For many real-world application problems, the availability of data labels for supervised learning is rather limited. It is often the case that a limited number of labelled cases is accompanied by a larger number of unlabeled ones. This is the setting for semi-supervised learning, in which unsupervised approaches assist the supervised problem and viceversa. In this report, we outline some basic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009